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Protein degradation in mitochondria

Michael Käser and Thomas Langer∗

The biogenesis of mitochondria and the maintenance of mi-
tochondrial functions depends on an autonomous proteolytic
system in the organelle which is highly conserved through-
out evolution. Components of this system include processing
peptidases and ATP-dependent proteases, as well as molecular
chaperone proteins and protein complexes with apparently reg-
ulatory functions. While processing peptidases mediate matu-
ration of nuclear-encoded mitochondrial preproteins, quality
control within various subcompartments of mitochondria is
ensured by ATP-dependent proteases which selectively remove
non-assembled or misfolded polypeptides. Moreover, these pro-
teases appear to control the activity- or steady-state levels of
specific regulatory proteins and thereby ensure mitochondrial
genome integrity, gene expression and protein assembly.
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Introduction

The selective degradation of proteins is essential
for cellular homeostasis and allows its adaptation
to altered environmental conditions. Similar to
the turnover of cytosolic proteins, proteolysis of
mitochondrial proteins can occur in the lysosomal
compartment upon autophagy of the whole or-
ganelle.1 While this process is predominant under
starvation conditions and results in the non-selective
removal of mitochondrial proteins, processing or
proteolysis of specific mitochondrial proteins is
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mediated by peptidases within mitochondria them-
selves.2, 3 In general, these peptidases are highly
conserved and, at least in most cases, appear to be
ubiquitously present in mitochondria of eukaryotic
cells (Figure 1). Mitochondrial peptidases can be
divided into three groups: processing peptidases,
oligopeptidases and ATP-dependent proteases. We
will focus in this review on ATP-dependent proteases
in mitochondria and only briefly summarize the
current understanding on other peptidases which is
described in a comprehensive manner elsewhere.4–9

Mitochondrial processing peptidases

The vast majority of mitochondrial proteins is nuclear
encoded. The notion, that targeting to mitochon-
dria and intramitochondrial sorting is ensured by
N-terminal presequences which are proteolytically
cleaved off once proteins reach their final destination,
provided first evidence for the existence of specific
peptidases in mitochondria. Processing enzymes have
been identified since then in various mitochondrial
subcompartments (Table 1). Despite rather degen-
erate cleavage motifs, processing of mitochondrial
preproteins occurs with high fidelity. It depends on
structural information within the presequence and in
regions adjacent to the cleavage site.

The mitochondrial processing peptidase (MPP)
cleaves off N-terminal mitochondrial targeting se-
quences of nuclear-encoded precursor proteins in
the mitochondrial matrix space5, 6, 8, 9 (Table 1). The
heterodimeric Zn2+-metallopeptidase consists of two
subunits of about 50 kDa. Initial substrate recognition
and binding is mediated by α-MPP which presents
presequences to the proteolytically active β-subunit
for cleavage.10, 11 While many matrix and inner
membrane proteins are released in their mature form
from MPP, maturation of some matrix and intermem-
brane space proteins depends on a second processing
step. The mitochondrial intermediate peptidase
(MIP) cleaves off N-terminal octapeptides from some
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Figure 1. The proteolytic system of mitochondria. Maturation of nuclear-encoded preproteins is mediated by
specific processing peptidases in various mitochondrial subcompartments: mitochondrial processing peptidase (MPP),
mitochondrial intermediate peptidase (MIP), and inner membrane peptidase (IMP). ATP-dependent proteases degrade non-
native polypeptides and exert crucial regulatory functions in mitochondrial biogenesis: PIM1/Lon protease, ClpXP protease
(only identified in mammalian mitochondria), m-AAA protease and i -AAA protease. An additional ATP-dependent protease
has been identified in the intermembrane space of mammalian mitochondria (MISP I; mitochondrial intermembrane space
protease I).88 The mitochondrial oligopeptidase MOP (termed yscD/Prd1p in yeast) in the intermembrane space represents
the only identified oligopeptidase in mitochondria.91, 92 The prohibitin complex does not exhibit proteolytic activity but
modulates proteolysis by the m-AAA protease. See text for details. OM, mitochondrial outer membrane: IMS, mitochondrial
intermembrane space; IM, mitochondrial inner membrane; M, mitochondrial matrix.

matrix-localized proteins including iron-utilizing
proteins and components of the electron transport
chain, the tricarboxic cycle and the mitochondrial
genetic machinery.12–15 The physiological function of
processing by MIP, however, remains to be elucidated.
Maturation of intermembrane space proteins with a
bipartite presequence occurs by consecutive cleavage
by MPP in the matrix and by the inner membrane
protease (IMP) in the intermembrane space.4, 16, 17

The latter protease is homologous to eubacterial
and eukaryotic signal peptidases.18 It is composed of
two related subunits with non-overlapping substrate
specificities, Imp1p and Imp2p, both of which are
an integral part of the inner membrane and expose
their catalytic sites to the intermembrane space.19

ATP-dependent proteases of mitochondria

In contrast to limited proteolytic events mediated
by processing peptidases, ATP-dependent proteases
mediate the complete degradation of dispensable
mitochondrial proteins. Several ATP-dependent
proteases have been identified in different subcom-
partments of mitochondria (Table 2). They are all
derived from bacterial ancestors and comprise highly
conserved protein families in eukaryotic cells.2, 3, 20

Studies in the yeast Saccharomyces cerevisiae revealed
a dual function of ATP-dependent proteases in
mitochondria. On one hand, they constitute a quality
control system and prevent the possibly deleterious
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accumulation of non-assembled and misfolded
polypeptides in the organelle. On the other hand,
the selective proteolysis of some mitochondrial
proteins by ATP-dependent proteases appears to
be crucial for mitochondrial biogenesis. Increasing
evidence suggests that a loss of the latter activity
explains severe phenotypes associated with mutations
in ATP-dependent proteases in various organisms
including man.

Lon-like proteases in the matrix

Lon-like proteases build up a conserved protein fam-
ily with members in eubacteria, archaebacteria and eu-
karyotic cells where they appear to be exclusively local-
ized to the matrix space of mitochondria.21–24 Func-
tional conservation between various members of this
family has been demonstrated by complementation
studies in yeast.25, 26 Lon-like proteases form homo-
oligomeric complexes. While the stoichiometry of Es-
cherichia coli Lon protease is still a matter of debate, a
heptameric stoichiometry has recently been described
for the yeast homologue27 which is also termed PIM1
protease.21, 22 The analysis of mitochondrial extracts
provided first evidence for the existence of an even
larger high molecular mass assembly in vivo.28

Several domains can be distinguished in subunits
of Lon-like proteases. They harbour an ATPase
domain characteristic of Walker-type P-loop AT-
Pases which exhibits a tertiary fold similar to other
ATP-dependent proteases.29, 30 ATP hydrolysis is
indispensable for proteolysis whereas ATP binding
was found to be required for oligomerization of yeast
PIM1 protease.28, 31 A proteolytic domain containing
the catalytically active serine residue is present at the
C-terminus of the protease subunits. Mitochondrial
Lon-like proteases contain an additional N-terminal
domain of unknown function which is absent in
eubacterial homologues. As shown for PIM1 protease
in yeast, sorting to mitochondria is ensured by a tar-
geting sequence and a pro-region at the N-terminus.28

While the targeting sequence is cleaved off by MPP
in the matrix, the pro-region is autocatalytically
removed upon assembly of PIM1 subunits.

Substrates of Lon-like proteases in mitochondria
have only been identified in yeast and include various
non-assembled polypeptides, such as β-MPP, subunits
α, β and γ of the F1F0-ATP synthase and ribosomal
proteins,20 as well as missorted and misfolded model
proteins.32 PIM1 protease is thus part of a quality
control system in the matrix preventing the accu-
mulation of non-native polypeptides. Consistently,

inclusion bodies containing most likely aggregated
mitochondrial proteins have been observed in yeast
mitochondria lacking PIM1 protease.22 It is conceiv-
able that the ATPase domain of Lon proteases exerts
chaperone-like activity, promotes substrate unfolding
and ensures the specificity of proteolysis, as such a
role has been demonstrated for structurally related
ATPase domains of other ATP-dependent proteases.33

This activity, however, is apparently not sufficient to
prevent the aggregation of substrate polypeptides, a
prerequisite for their degradation by Lon-like pro-
teases. This is achieved by the mitochondrial Hsp70
system which was found to cooperate with PIM1 pro-
tease in the degradation of misfolded polypeptides
in the matrix of mitochondria.32 The Hsp70 system
also promotes folding of newly imported proteins in
the matrix and thus represents a checkpoint between
folding and degradation of mitochondrial proteins.
The fate of a polypeptide is thought to be determined
by the kinetics of partitioning between an association
with PIM1 protease for proteolysis and binding to the
Hsp70 system for folding.3, 32

Inactivation of PIM1 protease in yeast causes
severe phenotypes which appear to reflect specific
regulatory functions of the protease during mito-
chondrial biogenesis rather than the deleterious
effect of non-native polypeptides accumulating in the
absence of the protease. PIM1 protease affects the
expression of mitochondrially encoded respiratory
chain subunits at multiple steps and is therefore
required for cell growth on non-fermentable car-
bon sources (Figure 2) (see Reference 34 for a
comprehensive review). Cells lacking PIM1 protease
accumulate extensive mutations in the mitochondrial
DNA (mtDNA).21, 22 The molecular basis of this
phenotype is presently unclear, but the peculiar
property of bacterial and human Lon proteases to
bind single-stranded DNA in a site-specific manner
suggests a direct role of Lon-like proteases in the
mtDNA metabolism.35, 36 Moreover, PIM1 protease
controls the expression of two mitochondrial mosaic
genes, COX1 and COB, which encode the essential
respiratory chain subunits Cox1p (subunit 1 of
cytochrome c oxidase) and Cob (cytochrome b of the
cytochrome bc1-complex).37 PIM1-mediated prote-
olysis is required for the splicing of introns in both
genes which code for RNA maturases. These enzymes
are synthesized as fusion proteins with preceeding
exons and activated by proteolytic removal of the
exon-encoded moiety.38, 39 It is an attractive possibility
that PIM1 protease mediates this cleavage reaction.
Alternatively, the protease may control the activity of
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Table 1. Processing peptidases of mitochondria

Peptidase Localization Subunits Proteolytic activity Substrates

MPP (mitochondrial matrix α-MPP Zn2+-metallopeptidase • soluble matrix proteins
processing β-MPP • IM proteins
peptidase) • IMS proteins with bipartite

presequences
MIP (mitochondrial matrix metallopeptidase • iron-utilizing proteins
intermediate • respiratory chain subunits
peptidase) • tricarboxic cycle enzymes

• components of the
mitochondrial genetic
machinery

IMP (inner IM, Imp1p serine-peptidase • IM and IMS proteins with
membrane facing the IMS Imp2p bipartite presequences
peptidase

regulatory proteins directly involved in pre-mRNA
splicing. After transcript maturation, translation of
COX1 mRNA also depends on PIM1 protease37 which
thus exerts multiple functions in mitochondrial gene
expression essential for the maintenance of the
respiratory competence of the cell.

Clp-like proteases in the matrix

Proteases homologous to eubacterial Clp proteases
have been identified in the matrix of mammalian mi-
tochondria but are absent in lower eukaryotes such as
yeast.37, 40, 41 Next to nothing, however, is known about
their physiological function. Clp-like proteases form
hetero-oligomeric complexes with an interior cham-
ber for proteolysis and are built up by ATPase and pro-
teolytic subunits.33, 42 The ATPase subunits belong to
the Hsp100/Clp family,43, 44 members of which func-
tion both as chaperones and as subunits of bacterial
Clp proteases. They unfold misfolded polypeptides al-
lowing either their refolding by other chaperone sys-
tems or, if associated with proteolytic subunits, their
degradation. Notably, though lacking proteolytic sub-
units, homologues of the ATPase subunits are present
in the matrix of yeast mitochondria. Yeast Hsp78, a
member of the ClpB subfamily of chaperones in the
matrix,45 has apparently no proteolytic function but
is required for mitochondrial thermotolerance.46 Ho-
mologues of E. coli ClpX have been identified in mam-
mals and yeast. While forming the ATPase subunit of
a Clp-like protease in mammalian mitochondria,41 it
might act as a chaperone on its own in yeast lacking
an apparent proteolytic partner.47

AAA proteases in the mitochondrial inner membrane

A large number of mitochondrial proteins are located
in the inner membrane which is characterized by
an extremely high protein content.48 Quality control
of inner membrane proteins is ensured by two ATP-
dependent proteases, termed AAA proteases, which
are an integral part of this membrane and exert a
key function in the maintenance of its integrity.49

They expose their catalytic sites to opposite membrane
surfaces, the matrix and the intermembrane space
side, and are accordingly termed m- and i -AAA
protease. Orthologues of both proteases are seemingly
present in mitochondria of all eukaryotic cells but are
best studied in the yeast S. cerevisiae.

Mitochondrial AAA proteases belong to a highly
conserved protein family with homologues also
present in chloroplasts and eubacteria.49, 50 They
build up large complexes with a native molecular
mass of approximately 1 MDa in the mitochondrial
inner membrane which are composed of identical or
closely related subunits of 70–80 kDa.51, 52 All subunits
contain an ATPase domain, which is characteristic of
the AAA superfamily of ATPases (for ATPases asso-
ciated with a variety of cellular activities)30, 53, 54 and
which has chaperone-like properties.55 A proteolytic
domain with metallopeptidase activity is present at
their C-terminus. AAA proteases degrade, in contrast
to soluble ATP-dependent proteases, membrane-
embedded polypeptides if they are non-assembled
or misfolded. Inactivation of AAA proteases causes
severe defects in various organisms including neu-
rodegeneration in humans, most likely reflecting
regulatory functions of these proteases crucial for the
biogenesis and homeostasis of mitochondria.
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Figure 2. Roles of ATP-dependent proteases in mitochondrial gene expression and protein assembly in S. cerevisiae. Processes
under the proteolytic control of ATP-dependent proteases are underlined. See text for details. OM, mitochondrial outer
membrane; IMS, mitochondrial intermembrane space; IM, mitochondrial inner membrane; M, mitochondrial matrix.

i-AAA protease

The i -AAA protease in yeast appears to represent
a homo-oligomeric complex composed of Yme1p
subunits.52 Yme1p contains one transmembrane
segment. An N-terminal domain of approximately
170 amino acid residues is present in the matrix space
while a large C-terminal domain with the catalytic
sites is exposed to the intermembrane space.52 Point
mutations in the proteolytic center of Yme1p or a
deletion of the complete YME1 gene both result in
identical pleiotropic defects in S. cerevisiae.56–58 Cells
lose their respiratory competence at elevated temper-
ature and accumulate mitochondria with a punctate,
non-reticulated morphology. The latter phenotype
has been suggested to result in an increased turnover
of mitochondria in the vacuolar compartment.59

This scenario could provide an explanation for the
increased rate of mEDNA escape which has originally
lead to the identification of the YME1 gene.60 The
molecular basis of various phenotypes associated
with yme1 mutations is presently not understood,
but it appears likely that multiple proteolytic sub-
strates of Yme1p exist. Consistently, each of the
various phenotypes can be suppressed individually
by different extragenic mutations.58, 59, 61, 62 The only

reported substrate of the i -AAA protease, however,
is non-assembled subunit 2 of cytochrome c oxidase
(Cox2p),57, 63, 64 illustrating the quality control
function of the protease in the inner membrane.

m-AAA protease

In S. cerevisiae, the m-AAA protease is composed
of multiple copies of two homologous subunits,
Yta10p (Afg3p)65, 66 and Yta12p (Rca1p),67, 68 which
are closely related to each other and to the i -AAA
protease subunit Yme1p.51 In contrast to Yme1p,
Yta10p and Yta12p span the inner membrane twice.
A small N-terminal and a large C-terminal domain
harbouring the catalytic sites are exposed to the
matrix.51 Mutational analysis of both proteins in
yeast revealed first evidence for an overlapping but
non-identical substrate specificity of Yta10p and
Yta12p.52, 69 A variety of substrate polypeptides has
been identified including non-assembled subunits
of respiratory chain complexes and of the F1F0-ATP
synthase.51, 70 All of these polypeptides are an integral
part of the inner membrane but it is likely that
the m-AAA protease is also capable of degrading
proteins peripherally associated with the inner
membrane.
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The pivotal role of the m-AAA protease of mitochon-
drial biogenesis is illustrated by strong phenotypes
associated with mutations in Yta10p and Yta12p in
yeast. The m-AAA protease is essential for the mainte-
nance of oxidative phosphorylation.65, 66, 68, 69 The ex-
pression of the mitochondrially encoded respiratory
chain subunits Cox1p and Cob is under the proteolytic
control of the m-AAA protease.69 Impaired splicing
of COX1 and COB introns encoding RNA maturases
was observed in the cells lacking m-AAA protease (Fig-
ure 2). Similar to the matrix-localized PIM1 protease,
the m-AAA protease might be involved in the prote-
olytic activation of RNA maturases (see Reference 34
for a comprehensive review). In any case, the activity
of two ATP-dependent proteases, the PIM1 and the m-
AAA protease, is required to ensure the expression of
two mitochondrial mosaic genes coding for essential
respiratory chain subunits. In addition to its role in
mitochondrial gene expression, the m-AAA protease
affects also the post-translational assembly of respira-
tory chain complexes and the F1F0-ATP synthase.69, 71

While these results establish crucial functions of the m-
AAA protease in mitochondrial biogenesis, a detailed
understanding of these processes awaits the identifi-
cation of the target proteins of the protease.

Two orthologues of yeast m-AAA protease subunits
have been identified in humans.72, 73 Mutations in
one of them, paraplegin, cause an autosomal recessive
form of hereditary spastic paraplegia.72 Deficiencies
in mitochondrial oxidative phosphorylation were
observed in these cells, reminiscent of defects in yeast
cells lacking Yta10p and Yta12p. These findings point
to conserved functions in mitochondrial biogenesis of
m-AAA proteases in yeast and mammals.

Regulation of m-AAA protease activity by prohibitins

The analysis of mitochondrial extracts by sizing
chromatography in yeast revealed that the m-AAA
protease is present in a supercomplex in the inner
membrane which has a native molecular mass larger
than 2 MDa.74 It associates with another membrane
protein complex containing the prohibitin homo-
logues Phb1p and Phb2p. While also an integral part
of the inner membrane, Phb1p and Phb2p are largely
exposed to the intermembrane space, i.e. to the
opposite membrane surface as the m-AAA protease.74

The prohibitins do not represent novel subunits
of the m-AAA protease as they are dispensable for
its proteolytic activity. Rather, they appear to fulfill
regulatory functions during proteolysis. An increased
turnover of non-assembled inner membrane proteins

by the m-AAA protease was observed in mitochondria
lacking prohibitins suggesting a negative regulatory
effect.74 Affecting the conformation of the m-AAA
protease, the prohibitin complex may modulate its
specific proteolytic activity. Alternatively, prohibitins
may directly interact with substrate polypeptides and
regulate their binding to the m-AAA protease. A simi-
lar function has been described for the E. coli proteins
HflK and HflC which show sequence similarities to
eukaryotic prohibitins and modulate the proteolytic
activity of the E. coli AAA protease FtsH.75–77 Thus,
regulation of AAA proteases appears to be conserved
and derived from an earlier common ancestor.

Prohibitin was originally identified in mammals due
to its decreased expression in tumor cells and its ability
to negatively regulate cell proliferation.78, 79 Highly
conserved homologues appear to be ubiquitously
present in all eukaryotic cells80 and have been
implicated in diverse processes, such as the regulation
of the cellular life span81 and the maintenance
of mitochondrial morphology.82 It remains to be
determined whether the various effects of prohibitins
reflect their role in proteolysis or whether additional
functions have to be envisioned. The solvent-exposed
domain of prohibitins exhibit significant sequence
similarity to stomatin-like proteins and to the caveolae-
associated flotillins, raising the intriguing possibility
that these proteins are also components of membrane-
associated proteolytic complexes.83

Quality control of mitochondrial proteins by
ATP-dependent proteases

The fidelity of proteolysis, i.e. the specificity of sub-
strate recognition by mitochondrial ATP-dependent
proteases is crucial to prevent cell damage. In the
eukaryotic cytosol, polyubiquitination of proteolytic
substrates ensures their targeting to the 26S protea-
some for proteolysis.84 There is, however, no evidence
for the existence of a similar system within mitochon-
dria nor have sequence motifs been identified which
trigger the degradation of specific mitochondrial pro-
teins. Rather, identified proteolytic substrates appear
to be solely recognized due to their non-native con-
formation. Evidence for the importance of the folding
state of mitochondrial proteins for proteolysis was pro-
vided by studies on the stability of hybrid proteins con-
taining dihydrofolate reductase (DHFR). Destabiliza-
tion of the DHFR domain at high temperature or by
point mutations results in turnover of the hybrid pro-
teins. This holds true for the proteolytic breakdown
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Table 2. ATP-dependent proteases in mitochondria of S. cerevisiae. See text for details. Proteolytic substrates identified
represent exclusively non-assembled membrane proteins illustrating the quality control function of the proteases within
mitochondria

ATP-dependent protease Localization Subunits Function Substrates

PIM1/Lon protease matrix Pim1p • mtDNA integrity • Mas1p
• COX1- and COB-pre- • α-β-γ -subunit of the

mRNA splicing F1F0-ATP synthase
• COX1 translation • ribosomal proteins

m-AAA protease IM, Yta10p • COX1- and COB-pre- • Cox1p
facing the matrix (Afg3p) mRNA splicing • Cox3p

Yta12p • assembly of bc1-, • Cyt b2
Rca1p cytochrome c oxidase, • subunits 6, 8, 9 of the

ATP synthase F1F0-ATP synthase
complexes

i -AAA protease IM, Yme1p • maintenance of • Cox2p
facing the IMS respiratory competence

at high temperature
• mitochondrial

morphology

of soluble proteins by PIM1 protease in the matrix26

as well as for the turnover of integral membrane pro-
teins, which expose an unfolded DHFR domain to the
intermembrane space, by the i -AAA-protease.55

ATP-dependent proteases by themselves are capable
of sensing the folding state of their substrates. The
analysis of substrate binding to truncated versions
of the i -AAA protease subunit Yme1p revealed a
crucial function of its AAA domain, in particular of
its N-terminal part, for substrate binding.55 When
expressed and purified from E. coli, the AAA-domain
of Yme1p exerts chaperone-like properties: it binds
specifically to non-native polypeptides and suppresses
their aggregation.55 ATP-dependent conformational
changes may result in unfolding of associated sub-
strate polypeptides facilitating their subsequent
degradation at the proteolytic site. Notably, all known
ATP-dependent proteases are thought to have a
conserved fold of ATPase domains suggesting mech-
anistic similarities.29, 30 Indeed, a chaperone-like
activity has been established for the ATPase subunits
of both Clp proteases and the 26S proteasome.85, 86

E. coli ClpA was found to completely unfold a model
substrate in vitro.87 Unfolding of misfolded substrate
polypeptides may therefore be a common function of
the ATPase domain of ATP-dependent proteases.

Perspectives

Although recent years have seen rapid progress in the
understanding of the proteolytic system of mitochon-

dria, many questions remain to be addressed. The
mechanism of ATP-dependent proteolysis, in partic-
ular of membrane proteins, as well as the identifi-
cation of authentic proteolytic substrates with regu-
latory functions in mitochondrial biogenesis will be
a major focus of future studies. Moreover, additional
proteolytic pathways may be established which, for in-
stance, ensure the turnover of mitochondrial proteins
in the outer membrane or intermembrane space. The
existence of an ATP-dependent proteolytic activity in
the mitochondrial intermembrane space in mammals
has been reported.88 Increasing evidence links the cy-
tosolic 26S-ubiquitin-proteasome system to mitochon-
dria58, 89, 90 but the molecular basis of these observa-
tions is still elusive. It appears that the mitochondrial
proteolytic system still keeps a lot of its secrets.
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